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SUMMARY o

In this paper we consider the problem of estimating the value of the
" non-stochastic regressor at which the response attains a pre-specified level.
We assume some prior knowledge, based on previous experience, about
the distribution of such a target point, and derive the optimum design for
the estimation problem in the case of lincar and quadratic regression under
fixed and random coefficient models. '
Key words : Linear regression, Quadratic- regression, Optimum design.

1, Introduction

Let Y be a random response variable whose expected value n(x) depends
on the level of a non-stochastic regressor x. The problem considered here is
the determination of the value of x=Xg at which the ‘expected response
n (x) attains a specified value . In general, n (x) is unknown. We assume
that, in the region of interest, 1 (x) can be approximated by a polynomial of
a given degree p. :

‘Marking for bucking is the problem of converting tree stems into smaller
logs optimally according to a given utility function (Liski and Nummi [6)).
Its solution is.important for the planning and complishing of forest harvesting

affecting directly the conditions for lumber production. An admissible cutting
pattern is a set of stem points 0 < x; <...<x such that the logs satisfy the

conditions

Xk41 X € [lmin,lmax] and y 2 Yo
fork=1,2,...,K, where x, is at the butt of a tree, l,;in is the minimum and
1., the maximum length of an admissible log and y, is the minimum acceptable

log diameter and y, is the observed diameter at the point x, . Then, in fact,
X, is the distance of the kth cutting point from the butt end of a stem. Now
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E (Y Ix)=m (x)is the expected diameter value at the stem height x. We assume
here that m(x) is a continuous non-increasing function of x and
n(x)=0 for x 2 xy, where xy is the height of a tree. If y, is attained at the

point x, then the length of the exploitable part of a tree is x. It is of great

practical importance to know the height at'which the diameter attains the value
Yo - For example, the number of logs K depends on x,. We assume that there

are data available on previously measured trees, which can be utilized when
estimating x, on current trees. Other applications of inverse prediction are

considered in Liski and Nummi ([5], [7]). The extensive calibration literature
contains further applications (see Osborne [8]).

When predicting future observations on a statistical unit, as on a tree stem,
given past measurements on the same and other similar units, it may not be
optimal to use all available data. Then the question arises: How to select the
best subset of observations? Rao [9] considered one aspect of this problem in
considering prediction under growth curve models. He observed that the required
information for forecasting is often contained in the previous few measurements.
Liski and Nummi [4] made the same finding when studying the behaviour of
their growth curve predictor. One opportunity is to borrow strength in estimation
by incorporating data from similar units or parallel circumstances (see
Brillinger [1]). Observations may also be available on some explanatory
variables, which make it possible to find “similar” units. Another approach is
to use given measurements (the initial measurement, selection index) as a
covariate, as in Liski and Nummi ([4], [5], [6]). These authors also considered
the problem of selecting the estimation set or training set, which is the term
used in neural network literature (Liski and Nummi [5), [6]).

Let y, be the observation at the initial value x = a, say, for the tree under
consideration. It could be any available diameter measurement like the diameter
at the breast height (a=1.3 m), which is a standard measurement in practice.
Then we can select a subset of trees whose Y values at x=0 fall in
(y,x€). In this paper we restrict ourselves to a consideration of this simple
way of selecting a subset. Note that the theory can be straightforwardly
generalized for more general constraints when selecting a subset. For the fixed
effects model, using the usual least squares predictor (LSP), we try to find the
optimum design in Section 2. A random effects regression model will be
considered in Section 3.
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2. Fixed Regression Coefficient Model
In this section, we consider a fixed effects regression model.
2.1 Linear regression
Let us start with a linear regression> set-up :
Y, = Bo+Bix+e : o - @n

where Y, is a random response variable with E(Ylx)=PBy+Bx,x is a
non-stochastic regressor, B, B, are fixed regression coefficients and e, is a

random error with mean 0 and variance 2. We further assume that x varies
in some domain 7. The problem is to find the value of x=xg for which
E(Y lx=%5)=1 (xp)=1p, a specified value.

If B and B, are known, then we can automatically get the value of xq
by
xo={(Mo—Bo) /B

Since By and B, are unknown, we replace them by their least squares
estimates (LSE) to obtain

A A A
Xo= (Mo~ Bo) /By 22
Since x is a non-linear function of Bgand B, , any measure of the accuracy
of xq will depend on unknown parameters. Here we assume that, from past
experiences, we have some prior knowledge regarding x,. For the linear case
we require only the first two moments of Xq: '
€(xg) = 1 and V(xg) =V 2.3)

From the practical point of view, it appears that the response values can
be made available at the beginning of the range of values of the regressor x.
Thus, specifically, we will take the experimental region to be

0<x<h (2.4
Now let us make the following transformation :
x"=(x—u)/v”zandx6=ﬂ(x0‘—u)/v”2 " (2.42)
Then (2.1) reduces to

E(Y1x) = B+ By (n+xv'"?)
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= Bo+Bix’ (2.5)
where B =P,+ B, 1 and B} =B,v'”?. Moreover,

€(xp)=0and V(xp)=1" (2.6)

and the experimental region (2.4) reduces to

1S x'su, 1=-dk, u=trt @7

In the following, we work with the set-up (2.5)-(2.7) and drop the asterisks
in x", xq, Bo and B} throughout.

Since xy given by (2.2) is non-linear in the parameters, we apply the
d —method and a large sample approximation to find V (QO):

V(o) = [ 20 20 ) (f)[ Zo Zo @8)
M ERT 9o B, |

A A
where D (B) is the dispersion matrix of f, the LSE of B, and B, based on
the  observations Yi»Ya .-, ¥, corresponding to the n-points
X= (X, Xg, o0, X )

The problem is that of finding n points in (2.7) in order to estimate Qo

most efficiently. However, for obvious reasons, we work with the continuous
(approximate) design set-up (c.f. Kiefer [3], Fedorov [2], Silvey [10]). It is

easy to see that v
dxXy IXg 1
o |~ 1xo)
(aBo aB,J By

Hence (2.8) reduces to
A A 1
VR = éa, M)D(B)(XO] 29)
l E

Since V (Qo) given by (2.9) involves unknown x,, we take

V(R = Bizsuo(ﬁ)(l ](l,xo) (2.10)
l E

Xo
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as a criterion for comparing different designs. Now we have
A . . .
D@) = (X' X)" : S (2.10a)

where X = (1,,x). Using (2.6), it can be shown that (2.10) reduces to

2 : '

N 1
EIV(X))==—{1+ [1+p7]
o Bin| " wp-wi g

. -n R n * .
where ' = 11—1 Z x;and p'p = -ll; Z xiz. For-fixed n, it is e;quival_ent to minimizing’
i=1 i=1 '
1+ —1—7 [1+p?]= 2 —2
wa— - 1

The minimum is attained when W=, -7 is maximized and u2 is
minimized. It turns out that to achieve the above objectwe observations are
to be taken at the extremes, i.e. at X’ =1 and at x" = u . In terms of the original
factor space (2.4), the optimum design consists of the points at the two extremes
of the factor space (2.4). The optimal distribution of total mass (under the
approximate design set-up) at the extremes is given by : pi(at zero) and
q=1-p(at h), where . -

_ —(1+uz)+\/(1+u2)(1+12)

Popt = 7 @.11)

—ll

This result is obtained by routine work of differentiation regardmg the objective
function. as a function of p. The minimum value of €[V (,xo )] is given by

b’g 1+ }l-,.z '
nf? My

evaluated at p,, for the optimal tWo-point design.

Consider for example the experimental region [0,5] with n=20, v=4.
Then in terms of the transformed variable we have 1=-10, u=-7.5. The
minimization problem yields p°pt=0.4295. Therefore, the optimal design is

given by :

Point: O 5
Mass: 043 0.57

-
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2.2 Quadratic regression

We now consider the quadratic regression (in the transformed factor space)
M ()= Bo+Byx + Byx* (2.12a)

with B, <0. Then the problem is to estimate

€~ :;al’v»-—f'.t'—"n‘ ‘/ -

xo={ B, £ B2 4B, (Bo—mp) 12}/ 2B, (2.12b)

for given mg with all the parameters in the model (2.12a) unknown. As before,
we propose the “plug-in” estimate '

Ro = <~ By~ [B* 4B, (Bo-nol™»/ 26, 2.13)

A A A
where B, B, and B, are the ordinary least squares estimates of the regression
coefficients. Here again V ( ’/20 ) will depend on the unknown parameters. Using
(2.12b) it can be shown that ’

9& % % ____._1___‘_(1 X XZ)
By 0By’ dBy | (By+2Byxe) OO

P

- Pl SO RN
L ettt T

.
etk

and consequently

A 1 A R
VEy=—75x,D(B) (2.19)
o (Bl+2ﬁz"o)zxo P%

A
where x5 = (1, xo, x3)’ and B denotes the LSE of B = (B, B,, B ). Let us write
A 02
DB =—M"
n
where M is the moment matrix. Then from (2.14) we have

1
(B, + 2B,xo)

Thus, for a fixed n, we have to find an optimum design for which

A 0’2
Vv (xo) = —[]— x,o M—le

A 1 02» . 1o ]
eIV z————— S Ml ex X (2.15)
O (By+ 2y P *o¥o

attains its minimum. From (2.15) it is clear that we only need a priori assumption 4
on xq and there is no need for any assumption on By, B, or B, separately. We
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use the same assumption (2.3) as in Section 2.1. Besides, we require a further
assumption on the third and the fourth moments of xy. The purpose of the

transformation (2.4 a) was to validate (2.6) and (2.7). In addition, we further
assume

E£(x)=0, E(xg)=1 (2.16)
Hence (2.15) simplifies to
| LM ) (2.17)
n (B} +4B3)
where L(M )=t M ' Exgx (2.18)

Here again, for obvious reasons, instead of n-point designs we consider the
class E of approximate (continuous) designs. '

Writing
1w oWy ) ‘
M=| Wi wy ws o =)
W2 oWy Wy

Cand M = ((s%)), it tums out that (2.18) simpiifies to

0 0
L(M'1)=tr[(:20 222,] (} ;]] +s' ‘ (2.19)

Next observe that

det (M) = py W= w3 = 3 — Wy T+ 2iHau5, (2.20)
) ’ 2 : ‘
Wt
Further, § = __——de‘: ( M2) @21)
00 0 VI 2 , 2
S I N it B L
and albrerrvadl IRV 222
[Sm SZZJ det(M) | Ww3—p3  wop-w) (2:22)
Thus finally,
1

LM = [ D)+ 2 (uips= 3 ) + 7 (g1 + (= )]

det (M)
: (2.23)

where det (M) is given in (2.20).
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To find the support points of the optimal design note that the criterion

function L(MY given by (2.18) is a linear optimality criterion. The
equivalence theorem for this criterion states that a design &y is optlmum in

the above sense iff
f(x) Mg BMp' f(x) < r My' B (229

for all x with equality at the support points of the design (see Silvey [10] or
Fedorov [2].)

Here f{(x) = (1 «x x2)’ and M, corresponds to M for the optimal design.
Now the left hand side of (2.24) is a quartic in x. Thus it can not have more
than three maxima in {l, u] and if it has three, two of these must be at the
extremes x=1and x=u, since there must be a local minima between every
two maxima. Hence this design cannot have more than three support points.
But it must have at least three in order that the information matrix is nonsingular.
It, therefore, has exactly three support points and two of them must be at the
extremes. As to the choice of the intermediate point and the choice of probability
mass at these three points, we may proceed as follows :

We start with the set-up

point: 1 m u
mass: p q=1-p-n€

—

so that
My = pf@ £ Q) +rf (m) £(m) + qf (u) f'(u)
Let y (1) be orthogonal to f(m) and f (u). Then it is readily seen that

Sy - 1O
0 pfMy®
Similarly, with analogous properties of y (m) and ¥ (u), we have .

¥ (m)

3 3
Mo £(m) = Fm) y e

and

M= f () = Y (u)
o fw) qf’ (u) ¥ (u)
Now, an examination of “=" in (2.24) yields

VA, VAL VA,
VAT VAt VA, T At Ay 1 VA don ™ r‘w—w—

aeoh

P
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where

A - YOBY® , _ y(m)By(m) _ YWBy@)
T eoyoR’ ™ myym)?’ Tt @) yw)

Finally, to determine m (only unknown quantity in the interior of the interval
(1, u), we obtain the following equation:

VA, + VA, +VA, = Vr (Mg’ B) = VL (Mp)

Exact analytic solution for m is quite difficult. Extensive numerical computations
indicate that m does not differ much from 'iz‘i We, therefore, take the middle

point viz., '—;—“ and derive the nature of optimal 3-point design. We adopt

point: 1 - % u
mass: p r q=1-p-1€)
For given |, u and 7, we can now find p,,, Qog and 1, from the expressions

" given above.

2.3 Numerical computations and major findings

Extensive numerical computations show that the optimal 3-point design
is quite robust against possible variation in the values of 7. However, it depends
on the extreme values of the reduced factor space. In the following table we
show some results.

Table 1. Optimal weights p, r and q for some combinations of 1, u and 7

T=2 7=3
! u | p@ r(h/2) qm) | pO) rhr2) g
-2 -1 0.1804 0.5227 0.2969 | 0.1841 05215 0.2944
-3 -1 0.0600 05233 0.4167 | 0.0615 0.5234 04151
-3 -2 0.0843 .0.7303 0.1854 | 0.0851 0.7282 0.1867
—4 =35 0.0685 0.8417 0.0898 | 0.0691 0.8403 0.0906
-5 =48 | 0.0803 0.8323 0.0874 | 0.0816 0.8307 0.0877

3. Random Coefficients Regression Model
3.1 Linear regression
Let us start with a linear structure
Y, =(Bo+by)+(By+b)x+e, 3.1
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where B, and B, are as before. The random variables bo.b; and e, are

uncorrelated, with zero means and variances op, o3 and o> respectively, b, and
b, represent random components associated with B, and B, . Here the error
term e, is defined as e, = Y, —E (Y, | by, b; ). The problem is, as before, that
of estimating the value of x = x, at which E (Y,) =7 (x) attains the pre-specified
value ng.

Suppose that we have n observations y,,y,, ... +Yn corresponding to- n
points X, , X,, ..., X, in same domain x. The objective is to find an optxmal
design in y so that we can estimate,

xo={(Mo—Bo)/B,
as accurately as possible. Here, again, we estimate x, by
A A A
xo={(no-Bo)/ B,
A A .
where B, and B, are the LSEs of B and B,, respectively. Now, in model (3.1),

the dispersion matrix of Y=(y,y,,....,y¥,), the n observation vector
corresponding to the n points x, X,, ..., X, in ¥, is given by

T=(02I,+03J, )+ 0’ xx, L (2.

where J =101, X=(x},Xy,...,x, )", 1, being the nx 1 vector of ones. To
solve the problem, as in the fixed effects case (Section 2), here also we maké
the same prior assumption (2.3) on x, and the same experimental region (2.4).
We work with the transformed set-up (2.6)-(2.7). To compare the performance
of the designs, we use €[V (Qo)], where V (QO) is given by (2.8) and € is the
expectation operator with respect to the pribr distribution of x,. The main
difference with .the fixed effects model is that here

D(B)=(X'E Xy | (3.3)

where X is given by (3.2) while in the fixed coefficient regression model it
is given by (2.10a). .

However, under the covariance structure (3.2), the ordinary least squares
estimator (OLSE) and the GLSE are equal (c.f. Rao [9]). Thus their covanance
matrices are also equal and (3.3) can be written as

D(B)=(X’X)" XZX(xx)! (3.4)
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If we denote the covariance matrix of b by D, then E=’XDX'+0§ I
and (3.4) further simplifies to

D(B)=D+o (XX - (.5)

" Since D is constant with respect to the design matrix X, minimizing 2.10)
is equivalent to minimizing ‘

1
tr M- 8"0 X

and we see that the optimal design is the same as in the fixed model case.
The same argument also remains valid when we adopt a random coefficient

quadratic regression model. In that case we tactly assume that LMY is
invariant with respect to sign changes. This is explained in the A_PPENDIX.
Thus we do not encounter any new problems.under random coefficient models.
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APPENDIX

In Section 3.2 we assume that L (M) is invarjant with respect to sign
changes. To see this, note that, under the transformation X —>—Xx, all the
expressions remain the same except b and e, which assume precisely the same
absolute value but with the opposite sign. Moreover, because of the same

transformation, x, also changes to —x, resulting in € (x3) = -€ (x3) . Thus
to show that the criterion function

abc)'
tr d € xox’g

oo

with x5 = (1, X9, xp)’ remains invariant under the transformation x - -x, it
would be sufficient to show that

a -b c-l
tr d —€ €x0x'0

k f

abec
=tr] de € xpx’g (A1)
f /
But
a-b ¢ abc
d - =l(_2) . d [+ l(_z)
f f
where
1 00
I.»y=]10-1" 0
-2)
0 01

Moreover l%_ 2)=1 so that l(_‘z)= I 2. Hence

a-b cY' abeY
d —ef =l(_ 2) a l(_z) (A.2)

- oo

Substituting (A.2) into the first expression of (A.1) yields the result.




